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We consider a fixed quantum measurement performed over n identical copies of quan-
tum states. Using a rigorous notion of distinguishability based on Shannon’s 12th
theorem, we show that in the case of a single qubit, the number of distinguishable states
is W (α1, α2, n) = |α1 − α2|

√
2n
πe

, where (α1, α2) is the angle interval from which the
states are chosen. In the general case of an N -dimensional Hilbert space and an area
� of the domain on the unit sphere from which the states are chosen, the number of
distinguishable states is W (N, n, �) = �( 2n

πe
)

N−1
2 . The optimal distribution is uniform

over the domain in Cartesian coordinates.

KEY WORDS: information in quantum measurements; distinguishability of
quantum states; number of distinguishable quantum states; information criterion for
distinguishability.

1. INTRODUCTION

In his remarkable 1981 paper, “Statistical Distance and Hilbert Space”
(Wootters, 1981), Wootters showed that the statistical distance between two vec-
tors in Hilbert space is proportional to the angle between these two vectors and
does not depend on the position of the vectors. He defines statistical distance as the
number of distinguishable intermediate states between the two vectors. However,
his notion of distinguishability relies on the apparently arbitrary criterion that two
states are distinguishable if measurements performed on n identical copies of each
state yield two distributions whose means are separated by a constant factor times
the sum of the standard deviations of these distributions. We use a more rigor-
ous notion of distinguishability based on Shannon’s 12th theorem (Shannon and
Weaver, 1949) and arrive at an expression for the number of distinguishable states
that is consistent with Wootters’ result; however, unlike that result, our expression
does not depend on an arbitrary choice of the distinguishability criterion. Rather,
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our notion of distinguishability is predicated on the guarantee that the measurer
be able to distinguish between the quantum states with probability approaching 1
when n copies of identical states are used as a symbol in a signal sequence whose
length tends to infinity. Wootters shows that for large n the number of distinguish-
able states between the vectors α1 and α2 is proportional to |α1 − α2|

√
n, where

α is the angle of the vector from some reference direction in the plane spanned by
the two vectors. We show in Section 2 that the actual number of distinguishable
states in a two-dimensional Hilbert space is

W(α1, α2, n) = eIsup(P ;K) = |α1 − α2|
√

2n

πe
, (1)

where Isup(P ; K) is the maximum mutual information between the (random) quan-
tum state and the results of measurements. We prove that this maximum is achieved
for an ensemble of quantum states with the uniform distribution of the angle α for
any interval [α2, α1]. The independence of the number of distinguishable states of
the position of the interval [α2, α1] is a remarkable asymptotic property that does
not hold for small values of n (cf. Levitin, 1994).

Section 3 of this paper provides a generalization of these results to the case of
an N -dimensional Hilbert space of states of the quantum system. It turns out that
the number of distinguishable states depends only on the area � of the domain
on the unit sphere from which the states can be chosen, but does not depend on
the shape and position of this domain. The optimal distribution is uniform over
this domain in Cartesian coordinates, and the number of distinguishable states is
W (N, n,�) = �( 2n

πe
)(N−1)/2.

2. THE CASE OF A SINGLE QUBIT

2.1. Formulation of the Problem

Consider a quantum physical system whose states are unit vectors in a
two-dimensional complex Hilbert space C2 (the so-called “qubit”). Denote the
state vector by v and let (�, �) be an orthonormal basis in the Hilbert space, so that
v = a� + b�, where a = 〈v|�〉, b = 〈v|�〉 are inner products and |a|2 + |b|2 = 1.
Then |a|2 = p and |b|2 = 1 − p are probabilities of two possible outcomes of the
measurement performed over the state v in the (�, �) basis. Obviously, these prob-
abilities do not depend on the phases of the coefficients a and b, and, therefore,
all quantum states with the same magnitudes |a| = x and |b| = y are indistin-
guishable by this measurement. Hence, the state space S3 can be reduced to the
non-negative quadrant of a circle in a real 2-dimensional Euclidean space (Fig. 1),
spanned by � and �. Now let v1 and v2 be two distinct state vectors, such that

vi = xi� + yi� where xi = √
pi and yi =

√
1 − pi, for i = 1, 2. (2)
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Fig. 1. The two state vectors v1, v2 and their projections on the the basis elements � and �.

Denote by αi the angle between � and vi , so that

pi = cos2 αi, 1 − pi = sin2 αi, i = 1, 2. (3)

Suppose, we want to distinguish between various quantum states chosen
from the interval of angles [α2, α1] by performing measurements in the (�, �)
basis. Further, assume that we are allowed to perform the measurement over n

identical copies of each quantum state.
Problem: What determines the number of distinguishable states, and what is

the asymptotic expression for the number of states in the interval [α2, α1] that can
be distinguished with probability approaching 1 when n tends to infinity?

As shown in the next section, the problem can be rigorously analyzed by
applying concepts and results of Shannon’s information theory.

2.2. Information-Theoretical Description

Suppose the state vectors are chosen from the angle interval [α2, α1] with
certain probability density function (pdf) PA(α), where A is a random variable
that takes on values from [α2, α1], α ∈ [α2, α1]. Let PP (p) be the pdf of the ran-
dom variable P that takes on values p, where p is the probability of the state
vector to be projected as the result of the measurement onto basis vector �. Ob-
viously, P = cos2 A, and the value of P (or of A) characterizes uniquely the
chosen quantum state. In a series of n measurements, let K be the (random) num-
ber of measurements which have resulted in projections onto �. The conditional
probability distribution of K given P is binomial:

PK/P (k/p) =
(

n

k

)
pk(1 − p)n−k, where k = 0, 1, . . . , n. (4)
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The values of K obtained in the measurement are the only data available
from which one can infer about the value of P , i.e., about the choice of a quantum
state.

Let PK (k) be the marginal probability distribution of K . The information
I(K; P ) in K about P is given by

I(K; P ) =
∫ p2

p1

n∑
k=0

PP (p)PK/P (k/p) ln
PK/P (k/p)

PK (k)
dp. (5)

The importance of considering information I(K,P ) stems from Shannon’s
12th theorem (Shannon and Weaver, 1949) which, for our setting of the problem,
can be rephrased in the following way.

Let S = {p}, where p is an n-dimensional vector p = (p, p, . . . , p) and
p ∈ [p1, p2] be the set of all possible input signals and Zn+1 = {0, 1, . . . , n} be the
set of all output signals in a communication channel with a conditional probability
distribution given by (4). Let L be the length of a sequence of such input signals
used independently. Then for any ε > 0 the maximum number M(L, ε) of input
signals that can be chosen from S in such a way that the probability of error
(incorrect decision about p based on the value of the output signal k ∈ Zn+1) does
not exceed ε satisfies the asymptotic property:

lim
L→∞

[
ln M(L, ε)

L

]
= Isup(K; P ), (6)

where Isup(K; P ) is the least upper bound of I(K; P ) given by (5) over all possible
probability distributions PP (p) of the input parameter P .

Note that the asymptotic expression for M(L, ε) in fact does not depend on
ε. This means that the number of distinct input signals (different values of P )
that can be distinguished with probability arbitrarily close to 1 is eIsup(K;P ). The
problem is reduced now to the computation of Isup(K; P ) under the condition that
P takes on values in [p1, p2]. This problem is very difficult, in general. However,
the following important theorem will be helpful.

Define individual information in P = p about K as

I(K; p) =
n∑

k=0

PK/P (k/p) ln
PK/P (k/p)

PK (k)
. (7)

As is well known (e.g. Mansuripur, 1987), I(K; P ) achieves the maximum value
Isup(K; P ) for such a distribution PP (p) that there exists a constant I such that

I(K; p) = I for all p such that PP (p) > 0 (8)

and

I(K; p) < I for all p such that PP (p) = 0. (9)
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Then Isup(K; P ) = I.

2.3. The Number of Distinguishable States

When n is large, the binomial distribution (4) can be well approximated by a
Gaussian distribution:

PK/P (k/p) =
(

n

k

)
pk(1 − p)n−k ≈ 1√

2πp(1 − p)n
e
− (k−pn)2

2p(1−p)n . (10)

For large n, distribution (10) has a very sharp maximum at k = pn, so that
the Laplace method (De Bruijn, 1958) can be used for evaluation of integrals
involving (10).

Consider a uniform distribution over the angle interval [α2, α1],

PA(α) = 1

|α1 − α2| for α ∈ [α2, α1]. (11)

The corresponding distribution of the probability P is

PP (p) = PA(α)

∣∣∣∣dα

dp

∣∣∣∣ = [p(1 − p)]−1/2

2|α1 − α2| where αi = cos−1 √
pi, i = 1, 2.

(12)

We will prove that for large n this distribution yields the maximum of I(K; P ).
The marginal probability distribution PK (k) can be evaluated as follows (assuming
p2 > p1):

PK (k) =
∫ p2

p1

PP (p)PK/P (k/p) dp

≈ 1

2|α1 − α2|
∫ p2

p1

1

p(1 − p)
√

2πn
e
− (k−np)2

2p(1−p)n dp. (13)

If the point of maximum p = k
n

of the exponential function in the integrand is
within the interval [p1, p2], the integration interval can be extended to (−∞,∞).
Otherwise, the value of the integral approaches zero when n tends to infinity. Thus,
for large n we obtain:

PK (k) ≈
{

1
2|α1−α2|

√
k(n−k)

if np1 ≤ k ≤ np2,

0 otherwise.
(14)

Note that, as could be expected, the distribution of K for large n is the dis-
crete counterpart of the distribution of P . Now we can evaluate the individual
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information I(K; p):

I(K; p) ≈

np1�∑

k=�np1

PK/P (k/p) ln

PK/P (k/p)

PK (k)

≈
∫ np2

np1

dk

p(1 − p)
√

2πn
e
− (k−np)2

2p(1−p)n
[
ln PK/P (k/p) − ln PK (k)

]
. (15)

The first term in (15) is the differential entropy of a Gaussian distribution
(with the opposite sign), the second one can be evaluated by the Laplace method.
Hence, asymptotically,

I(K; p) = −1

2
ln[2πep(1 − p)n] + 1

2
ln[p(1 − p)n2] + ln 2|α1 − α2|

= 1

2
ln

2n

πe
+ ln |α1 − α2|. (16)

Note that I(K; p) takes on the same value for any p ∈ [p1, p2]. Hence, distri-
bution (11) (or (12)) is the optimal one for large n, and the maximum information
Isup(K; P ) is expressed asymptotically as

Isup(K; P ) = 1

2
ln

2n

πe
+ ln |α1 − α2|. (17)

Thus, the number of distinguishable quantum states in the interval of angles
[α2, α1] is proportional to the length of the interval and to

√
n. It does not depend

on the position of the interval in the circle.

W(n, α1, α2) = eIsup(K;P ) = |α1 − α2|
√

2n

πe
. (18)

Of course, the range of A may consist of several separated intervals. Then
(18) remains valid, as long as n is sufficiently large, so that each interval has many
distinguishable states; also, |α1 − α2| should be replaced by the total length of the
intervals.

For given n, (18) achieves maximum if |α1 − α2| = π/2. Hence,

Wmax(n) =
√

πn

2e
. (19)

3. THE N-DIMENSIONAL CASE

Consider now a quantum system whose states are unit vectors in an N -
dimensional complex Hilbert space CN . Choose an orthogonal basis in CN corre-
sponding to a direct (von Neumann) measurement. Since all quantum states having
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the same projections on the basis vectors are indistinguishable by this measure-
ment, the state space S2N−1 is reduced to the non-negative orthant of the unit sphere
SN−1 in the real N -dimensional Euclidean space RN . Each state vector is described
now by N Cartesian coordinates x = (x1, x2, . . . , xN ),

∑N
i=1 xi

2 = 1, and pi = xi
2

is the probability of the ith outcome of the measurement. Suppose we want to dis-
tinguish between states chosen from a domain D of the non-negative orthant of
SN−1, and assume we are allowed to perform the same measurement over n identi-
cal copies of each quantum state, where n � 1. Let the quantum states be chosen
with probability density function PP(p) = PP(p1, . . . , pN ), where

∑N
i=1 pi = 1.

The outcome of such a measurement performed over n identical states is an N -
dimensional random variable K which takes on values k = (k1, k2, . . . , kN ), where
ki (i = 1, 2, . . . , N) is the number of cases when the ith result has been obtained.
The conditional probability distribution of K given P is multinomial:

PK/P(k1, . . . , km/p1, . . . , pm) = n!∏N
i=1 ki!

N∏
i=1

pi
ki , (20)

where
∑N

i=1 ki = n.
Denote by PK(k) the marginal probability distribution of K. Then the infor-

mation I(K; P) in K about P is given by an expression similar to (5):

I(K; P) =
∫

p∈D

∑
k

PP(p)PK/P(k/p) ln
PK/P(k/p)

PK(k)
dp, (21)

where summation is taken over all k such that
∑N

i=1 ki = n.
It follows from Shannon’s 12th theorem that for any ε > 0 the maximum num-

ber of distinct states W(N, n, ε) chosen from D in such a way that the probability
of incorrect identification of the state based on the results K of the measurement
does not exceed ε satisfies the limit

lim
N→∞

lim
n→∞

ln W(N, n, ε)

Isup(K; P )
= 1. (22)

Here Isup(K; P) is the least upper bound of I(K; P) over all possible PP(p). Note that,
in contrast with the two-dimensional case, there is no need to consider sequences
of distinct states provided n and N are sufficiently large.

Thus the number of distinct states (different values of P) that can be distin-
guished with probability arbitrarily close to 1 is given by eIsup(K;P). The computa-
tion of Isup(K; P) can be performed along the same lines as in the two-dimensional
case. For large n (n/N � 1), the multinomial distribution (20) can be approxi-
mated by the N -dimensional Gaussian distribution (Gnedenko, 1962)

PK/P(k/p) ≈ e
− 1

2

∑N
i=1

(ki−pi n)2

pi n δ(
∑N

i=1 ki − n)

(2πn)
N−1

2
∏N

i=1 pi

1
2

. (23)
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Consider the distribution PX(x) of the states which is uniform over the domain D.
Denote the area of D by |D| = �. Then

PX(x) = 1

�
δ




√√√√ N∑
i=1

xi
2 − 1


 (24)

for x ∈ D, and pX(x) = 0 otherwise. We will show that for large n this distribution
yields the maximum of I (K; P). Distribution (24) corresponds to the following
distribution of the random variable P over the domain D:

PP(p1, . . . , pN ) = 1

�
J

(
x1, . . . , xN

p1, . . . , pN

)
δ




√√√√ N∑
i=1

pi − 1


 (25)

=
∏N

i=1 pi
− 1

2 δ
(∑N

i=1 pi − 1
)

2N−1�
, (26)

where J
(

x1,...,xN

p1,...,pN

)
is the Jacobian of the coordinate transformation from x to p.

The marginal probability distribution of K is given by

PK(k1, . . . , kN ) =
∫

D
PP(p)PK/P(k/p) dp1 . . . dpN . (27)

For large n, the integrand in (27) has a sharp maximum at p = k/n. Applying
again the Laplace method we obtain:

PK(k1, . . . , kN ) ≈
∏N

i=1

(
ki

n

)− 1
2 δ(

∑N
i=1 ki − n)

2N−1�
, (28)

when k
n

corresponds to a point in the domain D; otherwise PK(k) = 0. The
individual information I (K; p) can be conveniently evaluated by use of “re-
duced” distributions PK′/P(k′/p) and pK′(k), where we take into account explic-
itly the dependence between the components of the vector k implied by the
δ-function:

PK′/P =
exp

[
− 1

2

∑N−1
i=1

(ki−pin)2

pin
−

(
1−pmn−∑N−1

i=1 ki

)2

2pmn

]

(2πn)
N−1

2
∏N

i=1 p
1
2
i

, (29)

PK′(k′) =
(
n − ∑N−1

i=1 ki

)− 1
2 ∏N−1

i=1 ki
− 1

2

2(N−1)�n
N
2 −1

. (30)
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Then

I(K; p) = I(K′; p) =
∫

k
n
∈D

PK′/P(k′/p)[ln PK′/P(k′/p)

− ln PK′(k′)]dk1 . . . dkN−1 = I1 + I2. (31)

The first term in (31) is simply the differential entropy (with the opposite sign) of a
multivariate (N − 1)-dimensional Gaussian distribution (29) with the determinant
of covariance matrix d = nN−1 ∏N

i=1 pi . Hence

I1 = −1

2
ln

[
(2πe)N−1d

] = −1

2
ln

[
(2πen)N−1

N∏
i=1

pi

]
. (32)

The second term in (31) can be evaluated by the Laplace method, since the
integrand has a sharp maximum at ki = pin (i = 1, . . . , N − 1). Hence

I2 = ln � + ln(2n)N−1 + 1

2
ln

N∏
i=1

pi. (33)

Thus, I (K; p) = ln � + N−1
2 ln 2n

πe
does not depend on p. This proves that the

distribution (24) is the optimal one and the maximum information in K about P is
asymptotically equal to

Isup(K; P) = ln � + N − 1

2
ln

2n

πe
. (34)

The number of distinguishable states is given by the following expression:

W(N, n,�) = �

(
2n

πe

) N−1
2

. (35)

Expression (35) turns into (18) for N = 2. Indeed, it is easy to see that a uni-
form two-dimensional distribution in Cartesian coordinates restricted to the non-
negative quadrant of a unit circumference results in a uniform distribution over
the polar angle α. Similarly, in the N -dimensional case we obtain a uniform
distribution over the area of the domain D, i.e. over the solid angle.

The number of distinguishable states reaches a maximum (for given N and
n) if D is the entire non-negative orthant of the N -dimensional unit sphere. Since
the area of the surface of the N -dimensional unit sphere is 2πN/2 [�(N/2)]−1, the
area of the non-negative orthant (the solid angle) is

�max = πN/2

2N−1�(N/2)
, (36)
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where � is Euler’s gamma-function. Thus the maximum number of distinguishable
states in N -dimensional space is

Wmax(N, n) = π1/2

�(N/2)

( n

2e

) N−1
2

. (37)

Remember that (36) and (37) are valid only when approximation (23) is valid, i.e.
when n � N .

4. CONCLUSIONS

The main result of the paper can be summarized as follows. The number of
distinguishable quantum states in a two-dimensional Hilbert space is proportional
to the number of identical copies of each state to the power N−1

2 and to the area �

of the domain of the unit sphere occupied by the state vectors. Surprisingly, it does
not depend on the shape and the position of this domain, provided that the main
assumption n/N � 1 is satisfied. The domain does not have to be connected: the
results hold for a set of separate domains with the same total area �. The optimal
distribution is uniform over the domain, which suggests that the states should be
chosen at equal angular distances from each other. For the two-dimensional case,
the number of distinguishable states is proportional to the angular interval and
to the square root of the number of identical copies of each state measured (cf.
Levitin et al., 2001).

The result that the number of distinguishable states is proportional to the
geometric distance as measured by angle in Hilbert space is quite nontrivial and
noteworthy. Indeed, it suggests that the metric of Hilbert space may result not from
a physical principle, but rather as a consequence of an optimal statistical inference
procedure.
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